
How the Host Communicates

USB Complete 233

8

How the Host
Communicates
Under Windows, an application that wants to access a USB peripheral must
communicate with a device driver that knows how to manage communica-
tions with the system’s USB drivers. This chapter explains how Windows
manages USB communications and explores the options for device drivers.

Device Driver Basics
A device driver is a software component that enables applications to access a
hardware device. The hardware device may be a printer, modem, keyboard,
video display, data-acquisition unit, or just about anything controlled by cir-
cuits that the CPU can access. Some devices, such as internal disk drives, are
inside the box with the CPU. Others, including just about all USB devices,
are external devices that connect to the system via cables (or wireless links).
As Chapter 7 explained, some device drivers are class drivers that handle
communications with a variety of devices that perform similar functions.

Chapter 8

234 USB Complete

Insulating Applications from the Details
Applications are the programs that users run, including everything from
word processors and databases to special-purpose applications that access
custom hardware. A device driver insulates applications from having to
know details about the physical connections, signals, and protocols required
to communicate with a device.

A device driver can enable application code to access a peripheral when the
application knows only the peripheral’s name (such as HP LaserJet 2300) or
the device’s function (joystick, drive, scanner). The application doesn’t have
to know the physical address of the port the peripheral attaches to or moni-
tor and control handshaking signals. Applications don’t even have to know
whether a device uses USB or another interface. The application code can be
the same for devices that perform similar functions but have different inter-
faces, with the hardware-specific details handled at a lower level.

The device driver translates between application-level and hardware-specific
code. Applications communicate with device drivers using functions sup-
ported by the operating system. The hardware-specific code handles the pro-
tocols needed to access the peripheral’s circuits, including detecting the
states of status signals and toggling control signals at appropriate times.

The Windows drivers for USB devices use a layered driver model where each
driver in a series performs a portion of the communication. The top layer
contains a client device driver (or client driver for short) that manages com-
munications between applications and lower-level bus drivers. Another term
for client driver is function driver. The bottom layer contains bus drivers
that manage communications between the client driver and the hardware.
One or more filter drivers may supplement the client and bus drivers.

The layered driver model simplifies the job of writing drivers. Devices can
share code for tasks they have in common. The drivers that handle commu-
nications with the system’s USB hardware are included with Windows, so
writers of client drivers don’t have to handle these details. Note also that the
layered driver model means that applications can’t access USB ports directly.
Windows doesn’t allow it. All application communications must be with a
driver assigned to a device.

How the Host Communicates

USB Complete 235

Options for USB Devices
There are several approaches to obtaining a driver for a USB device that
you’re developing. Many devices can use a driver that’s included with Win-
dows or provided by a chip vendor or other source. Other devices may
require custom drivers. When a custom driver is necessary, toolkits are avail-
able to simplify and speed up the task of driver writing. Sometimes more
than one way will work, and the choice depends on what’s easier, cheaper, or
offers better performance.

As Chapter 7 showed, many peripherals fit into standard classes such as disk
drives, printers, modems, keyboards, and mice. Each of these devices is
available with a choice of interfaces, including USB. For example, a disk
drive may use ATA/ATAPI, SCSI, IEEE-1394, or USB. When the devices in
a class may have any of multiple hardware interfaces, supplemental drivers
can support different interfaces. If a device has features or capabilities
beyond what a class driver supports, a device-specific filter driver may be
able to support these as needed.

User and Kernel Modes
To understand what the device driver has to do, you need to understand
where the driver fits in the communications path of a data transfer. Even if
you don’t need to write a driver for your device, understanding the driver’s
role will help in understanding the application-level code that you do write.

In the most general sense, a device driver is any code that handles communi-
cation details for a hardware device that interfaces to a CPU. Even a short
subroutine in an application can be considered a device driver. Under Win-
dows, the code for most drivers, including USB drivers, differs from applica-
tion code because the operating system allows the driver code a greater level
of privilege than applications are allowed.

Program code in a Windows system runs in one of two modes: user or ker-
nel. Each allows a different level of privilege in accessing memory and other
system resources. Applications must run in user mode. Most drivers, includ-
ing all USB drivers, run in kernel mode, though a driver for a USB device

Chapter 8

236 USB Complete

may have a supplementary user-mode driver. Figure 8-1 shows the major
components of user and kernel modes in a USB communication.

In user mode, Windows limits access to memory and other system resources.
Windows doesn’t allow an application to access memory that the operating
system has designated as protected. Managing memory in this way enables a
PC to run multiple applications at the same time. If an application crashes,
other applications shouldn’t be affected. On x86 processors, user mode cor-
responds to the CPU’s Ring 3 mode.

Figure 8-1: USB uses a layered driver model under Windows, with separate
drivers for devices and the buses they connect to.

How the Host Communicates

USB Complete 237

In kernel mode, the code has unrestricted access to system resources, includ-
ing the ability to execute memory-management instructions and control
access to I/O ports. A kernel-mode driver can permit or deny an application
access to a device. For example, a joystick driver can allow any application to
use a device, or the driver can allow an application to reserve the device for
exclusive use. Other abilities that Windows reserves for kernel-mode drivers
include DMA transfers and responding to hardware interrupts. On x86 pro-
cessors, kernel mode corresponds to the CPU’s Ring 0 mode.

Applications communicate with client drivers using Windows API functions
or other components that call API functions internally but shield applica-
tion programmers from the details. The Windows WIN32 subsystem man-
ages communications between applications and client drivers. To
communicate with a USB device, an application typically doesn’t have to
know anything about the USB protocol, or even if a device uses USB at all.

Drivers communicate with each other using structures called I/O request
packets (IRPs). Windows defines a set of IRPs that drivers can use. Each IRP
requests a single input or output action. A client driver for a USB device
uses IRPs to communicate with the bus drivers that handle USB communi-
cations. The bus drivers are included with Windows and require no pro-
gramming by applications programmers or device-driver writers.

WDM Drivers
USB device drivers for Windows are kernel-mode drivers that must conform
to the Windows Driver Model defined by Microsoft for use under Windows
98 and later. These drivers are known as WDM drivers and have the exten-
sion .sys. (Other driver types may also use the .sys extension.)

Application programmers have a choice of programming languages, includ-
ing Visual Basic, Delphi, and C and its derivatives. But to write a driver for
a USB device, you need a tool that is capable of compiling a WDM driver.
The Windows DDK includes a C compiler for this purpose. An exception is
driver toolkits that provide a generic driver and either require no program-

Chapter 8

238 USB Complete

ming at all or permit you to use other compilers to customize a generic
driver with a user-mode component.

Layered Drivers
In the layered driver model used in USB communications, each layer han-
dles a piece of the communication process. Dividing communications into
layers is efficient because devices that have tasks in common can use the
same driver for those tasks. For example, all kinds of devices may use USB,
so it makes sense to have one set of drivers to handle the USB-specific tasks
that are common to all. Including these drivers with Windows means that
device vendors don’t have to provide drivers. The alternative would be to
have each device driver handle communicating directly with the USB hard-
ware, with much duplication of effort.

Figure 8-2 shows the layers involved with USB communications under
Windows XP.

Client Drivers

A client driver can consist of one or more files. The main client driver can be
a class driver provided with Windows or a vendor-provided driver. The cli-
ent driver manages communications that are specific to a device or a class of
devices. A class driver may also communicate with a miniclass driver that
manages communications with a subset of devices in a class. For example,
the HID USB miniclass driver manages USB-specific communications with
HID-class devices that have USB interfaces. Other HID miniclass drivers
could manage bus-specific communications with HIDs that have other
hardware interfaces.

A client driver or miniclass driver may also have one or more upper and
lower filter drivers (Figure 8-3). An upper-level filter driver can monitor and
modify communications between applications and a client driver. A
lower-level filter driver can monitor and modify communications between a
client driver and the bus drivers.

How the Host Communicates

USB Complete 239

For some composite devices, Windows XP loads a USB common-class
generic parent driver between the bus drivers and the client drivers for the
device’s interfaces. The generic parent driver handles synchronization,
Plug-and-Play, and power-management functions for the device as a whole
and manages communications between the bus drivers and the client drivers
for the composite device’s interfaces.

Figure 8-2: USB communications under Windows XP involve the USB bus
driver stack and one or more client drivers.

Chapter 8

240 USB Complete

USB Drivers

Under Windows XP, the USB bus drivers consist of the host-controller
driver, one or more miniport drivers, and the hub driver. The host-control-
ler driver, sometimes called the port driver, manages tasks that are common
to all host controllers. The host controller driver consists of a port driver
(usbport.sys) and one or more miniport drivers that each manage communi-
cations with one of the three host-controller types. The hub driver manages
communications with the system’s hubs. In Windows XP, the hub driver is
usbhub.sys.

The bus drivers are included with Windows, and application and
device-driver writers don’t have to know the details about how they work.

Figure 8-3: A client driver can have one or more filter drivers that monitor or
modify communications with devices.

How the Host Communicates

USB Complete 241

Perhaps because of this, Microsoft provides little documentation for these
drivers. If you want to know more about how low-level communications
work, one source of information is the source code and other documenta-
tion from the Linux USB Project.

Host Controller Types

There are three types of host controllers. Two support low- and full-speed
communications and one supports high-speed communications. The low-
and full-speed controller types are the Open Host Controller Interface
(OHCI) and the Universal Host Controller Interface (UHCI). High-speed
host controllers implement the Enhanced Host Controller Interface
(EHCI). The USB-IF’s Web site has links to the specifications.

Windows’ Device Manager enables you to view information about the host
controllers in a PC. To view the driver type, right-click the host controller
name, select Properties, then Driver and Driver Details. One of the drivers
should have ohci, uhci, or ehci in the name. Chapter 9 has more about using
the Device Manager.

OHCI and UHCI Differences

In Windows XP, controllers that conform to the OHCI standard use the
driver usbohci.sys, and controllers that conform to the UHCI standard use
the driver usbuhci.sys. In other Windows editions, the driver names can vary
but will contain ohci or uhci. Both drivers provide a way for the USB hard-
ware to communicate with the bus-class driver. The two drivers take differ-
ent approaches to implementing the host-controller’s functions. UHCI
places more of the communications burden on software and allows using of
simpler, cheaper hardware. OHCI places more of the burden on the hard-
ware and allows simpler software control. UHCI was developed by Intel and
OHCI was developed by Compaq, Microsoft, and National Semiconductor.

The differences should be transparent to driver developers and application
programmers. Both controllers comply fully with the USB specification.
Their performance can differ, however. Developers shouldn’t assume their
device works fine based on tests with one host-controller type.

Chapter 8

242 USB Complete

An OHCI controller is capable of scheduling more than one stage of a con-
trol transfer in a single frame, while a UHCI controller always schedules
each stage in a different frame. For bulk endpoints with a maximum packet
size less than 64 bytes, a UHCI driver attempts no more than one transac-
tion per frame, while an OHCI driver may schedule additional transactions
in a frame. An OHCI controller will poll an interrupt endpoint at least once
every 32 milliseconds, even if the endpoint descriptor requests a maximum
latency of 255 milliseconds, while UHCI controllers can, but don’t have to,
support less-frequent polling.

Developers who use UHCI hosts are sometimes surprised when their devices
fail when connected to an OHCI host, usually because the device isn’t
expecting to see multiple transaction attempts per frame for a single transfer.
Every device should work with both controller types. Test your device on
both!

Supporting All Speeds

An EHCI controller handles high-speed communications only. The EHCI
specification says that a host that supports EHCI must also support low and
full speeds except for the unusual situation where every port has a perma-
nently attached high-speed device. To support low and full speeds, the host
must have a companion OHCI or UHCI host controller or a USB 2.0-com-
pliant hub, which performs the function of a host controller for low- and
full-speed devices. Just about every PC with an EHCI controller has a com-
panion OHCI or UHCI controller. An EHCI controller and a companion
OHCI or UHCI controller can share a bus.

Users and application programmers don’t have to know or care which host
controller is communicating with a device, though Windows will warn if the
system has high-speed-capable ports and a user attaches a high-speed-capa-
ble device to a 1.x hub. The driver for EHCI controllers is usbechi.sys.

How the Host Communicates

USB Complete 243

Communication Flow
One way to better understand what happens during a USB transfer is to
look at an example. The following are the steps in a USB transfer with a
data-acquisition device that uses a vendor-specific client device driver.

Preliminary Requirements

Before an application can communicate with the device, several things must
happen. When a device is attached, Windows manages enumeration, as
described in Chapter 4. To identify which driver to use on first enumera-
tion, Windows compares the retrieved descriptors with the information in
the system’s INF files. Chapter 9 has more about INF files. When a device
supports multiple configurations, the driver selects a configuration. The
application that will access the device can then obtain a handle that identi-
fies the device and enables communications with it.

Initiating Data Transfers

To read data from a data-acquisition device, a user might click a button in a
data-acquisition application. Or a user might select an option that causes
the application to request a reading once per minute. Or periodic data
acquisitions might start automatically when the device’s driver is loaded or
when the user runs the application.

The Application’s Role

Windows includes API functions that enable applications to communicate
with client drivers. Applications written in Visual Basic, C/C++/C#, Delphi,
and other languages can call API functions. The available functions vary
with the driver, but applications typically can open communications with
CreateFile, exchange data using a combination of ReadFile/ReadFileEx,
WriteFile/WriteFileEx, and DeviceIoControl, and close communications
with CloseHandle.

To make programming simpler and safer, many languages support alternate
ways to access devices of various types. Microsoft’s .NET platform includes
classes and methods that eliminate the need to call many API functions
directly. Instead, applications communicate via intermediate layers with a

Chapter 8

244 USB Complete

Common Language Runtime (CLR) component that in turn calls the API
functions. For example, in Visual Basic .NET, the PrintDocument class
includes methods that enable applications to send text and images to a
printer.

Communications with any device may require calling API functions at
times, however. For example, .NET doesn’t provide methods for detecting
device attachment and removal via WM_DEVICECHANGE messages.

Each call to an API function includes the request, other required informa-
tion such as the data to write or amount of data to read, and a handle for
accessing the device. Microsoft’s Platform Software Development Kit (SDK)
documents the functions.

Although the names suggest that the functions are used only with files,
ReadFile and WriteFile (as well as ReadFileEx and WriteFileEx) can transfer
data to and from any driver that supports handle-based operations. The data
being read or data to be written is stored in a buffer specified by the function
call. A call to ReadFile doesn’t always cause the driver to retrieve data from a
device. The function may instead return data that a driver has already
requested and stored in a buffer. The details vary with the driver.

DeviceIoControl is another way to transfer data to and from buffers.
Included in each DeviceIoControl request is a control code that identifies a
specific request. Unlike ReadFile and WriteFile, a single DeviceIoControl
call can transfer data in both directions. The driver specifies what data, if
any, to pass in each direction for each control code. Some control codes are
commands that don’t need to pass additional data.

Windows drivers define control codes used by drives and other common
devices. For example, IOCTL_STORAGE_CHECK_VERIFY determines
if media is present and readable on removable media and
IOCTL_STORAGE_GET_MEDIA_TYPES returns the types of media
supported by a drive.

A vendor-specific driver can also define control codes. Because the codes are
sent only to a specific driver, it doesn’t matter if other drivers use the same
codes. For example, Cypress Semiconductor’s general-purpose driver

How the Host Communicates

USB Complete 245

CyUsb.sys defines a series of DeviceIoControl codes for transferring data,
configuring a device, and requesting status and configuration information.

A driver may also define additional functions that applications can use. For
example, the HID driver defines the functions Hid_GetFeature and
HidD_SetFeature for retrieving and sending Feature reports. These func-
tions use DeviceIoControl internally, but expose driver-specific functions
for application programmers.

The Client Driver’s Role

When an application calls an API function that reads or writes to a USB
device, Windows passes the call to the appropriate client driver. The driver
passes the request on in a format the USB bus-class driver can understand.

As mentioned earlier, drivers communicate with each other using IRPs. For
USB communications, the IRPs contain structures called USB Request
Blocks (URBs), which enable a driver to configure devices and transfer data.
For example, a driver requests a descriptor by submitting an IRP that con-
tains this URB:

URB_FUNCTION_GET_DESCRIPTOR_FROM_DEVICE

The Windows DDK documents the URBs.

A client driver requests a transfer by creating an URB and submitting it in
an IRP to a lower-level driver. The bus and host-controller drivers handle
the details of scheduling transactions on the bus. For interrupt and isochro-
nous transfers, if there is no outstanding IRP for an endpoint when its
scheduled time comes up, the host controller skips the transaction.

For transfers that require multiple transactions, the client driver submits a
single IRP for the entire transfer. All of the transfer’s transactions are then
scheduled without requiring further communications with the client driver.

If you’re using an existing client driver (rather than writing your own), you
need to understand how to access the driver’s application-level interface, but
you don’t have to concern yourself with IRPs and URBs. If you’re writing a
client driver, you need to provide the IRPs that communicate with the sys-
tem’s USB drivers.

Chapter 8

246 USB Complete

The Hub Driver’s Role

The USB hub driver, also called the bus driver, is the device driver for the
hubs on the bus. The bus driver requires no programming by device devel-
opers.

The Host-controller Driver’s Role

The host-controller driver passes data provided by the client driver to the
host-controller hardware, which in turn connects to the bus. The host-con-
troller driver requires no programming by device developers.

The Device’s Role

Data that leaves the host’s port may pass through additional hubs. Eventu-
ally the data reaches the hub that connects to the device, and the hub passes
the data on to the device. The device recognizes its address, reads the incom-
ing data, and takes appropriate action.

The Response

Most communications require a response, which may include data sent in
response to the request or a packet with a status code. This information trav-
els back to the host in reverse order: through the device’s hub, onto the bus,
and to the PC’s hardware and software. A client driver may pass a response
on to an application, which may display the result or take other action.

Ending Communications

When communications are complete, an application can use the API func-
tion CloseHandle to free system resources.

More Examples
Communications with other USB devices follow a similar path, but there
can be differences in how the transfer initiates and in how the client driver
handles communications.

Other examples of a user initiating a transfer are clicking on a USB drive’s
icon to view a disk’s folders or clicking Print in an application to send a file

How the Host Communicates

USB Complete 247

to a USB printer. In each of these cases, no data transfers until the applica-
tion requests a communication and the device driver fills a buffer with data
to send or makes a buffer available for received data.

A driver can also cause the host to continuously request data from a device
whether or not an application has requested it. For example, a keyboard
driver causes the host to request keypress data at frequent intervals because
there is no way to predict when a user will press a key.

The host also sends requests to enumerate devices on system power-up or
device attachment. The device’s hub causes the host to initiate these requests
when the hub notifies the host of the presence of a device. A suspended
device can use USB’s remote-wakeup feature to initiate a transfer by signal-
ing its hub, and in turn the host, to request resuming communications.

Creating a Custom Driver
Creating a WDM driver is not a trivial task. Writing a driver requires exper-
tise in C programming and a fair amount of knowledge about how Win-
dows communicates with hardware and applications. However, several
products can help to simplify and speed up the process.

Writing a Driver from Scratch
The minimum requirement for writing a device driver from scratch is the
Windows Driver Development Kit (DDK), which includes what you need
to create a driver: a C compiler, a linker, build utilities, and documentation.
Also included is example source code for filter drivers and drivers that
request bulk and isochronous transfers. The example drivers are a useful
starting point for developing a custom driver.

How to write a USB driver from the ground up is a much bigger topic than
this book has room for. An excellent book in this topic is Programming the
Microsoft Windows Driver Model by Walter Oney.

Chapter 8

248 USB Complete

Using a Driver Toolkit
A driver toolkit provides a way to jump start driver development by doing as
much of the work for you as possible. Toolkits that support creating USB
drivers are available from Jungo Ltd. and Compuware NuMega.

There are two general categories of toolkits. One provides a generic driver
that handles USB communications and generates a device-specific
user-mode driver and INF file for use with the driver. This approach is very
fast and requires no programming at all to create the driver but can’t handle
every situation. Other toolkits provide libraries and other tools that assist in
writing a custom driver for a device. This approach is more flexible but
requires programming expertise.

Automated Driver Generation

All USB communications follow the protocols defined in the USB specifica-
tion, so it makes sense that a single generic driver should be able to commu-
nicate with just about any device. A full-featured generic USB driver should
support all four transfer types, including vendor-defined control requests.
The driver should also support the power-management and Plug-and-Play
capabilities required of all WDM drivers. Additional functions such as the
ability to retrieve descriptors or select a configuration or interface are useful
as well.

Jungo’s WinDriver USB Device toolkit requires no driver programming at
all. A DriverWizard generates files that you can compile to create a custom
user-mode driver in an .exe file. The user-mode driver communicates with
the provided kernel-mode driver. You can compile the files generated by the
Wizard using Visual C++, C++ Builder, or Delphi. The DriverWizard also
creates an INF file for the device.

From the DriverWizard, you can select your device from the detected
devices and test communications by reading and writing to the device’s end-
points. You can then request the DriverWizard to create the driver files.
When the driver has been installed, applications can communicate with the
device using device-specific functions such as MyDevice_Open and
MyDevice_GetDeviceInfo.

How the Host Communicates

USB Complete 249

For faster performance, you can move portions of your code from the
user-mode driver to a kernel-mode driver called a Kernel PlugIn, which you
compile with Visual C++. For debugging, the included Debug Monitor
application enables you to monitor communications handled by the driver.
Different editions of WinDriver USB support Windows, Windows CE
.NET, and Linux.

Toolkits that Provide Libraries for Creating Custom Drivers

The completely automated toolkits aren’t suitable for every device. They
can’t create filter drivers, and you may want a completely custom driver for
the best possible performance. Two products for creating custom drivers are
CompuWare’s DriverWorks in the DriverStudio suite and Jungo’s Kernel-
Driver USB.

Each of these products has Wizards and code libraries that do much of the
work for you. You need to fill in the provided skeleton code and compile the
driver. The driver’s performance can be as fast as if you had written the
driver from scratch. DriverWorks is capable of generating driver code for
devices that use other buses besides USB. Jungo has a separate KernelDriver
product for non-USB devices.

Using GUIDs
A Globally Unique Identifier (GUID) is a 128-bit value that uniquely iden-
tifies a class or other entity. Windows uses GUIDs in identifying two types
of device classes: device setup classes and device interface classes. A device
setup GUID identifies a device setup class, which encompasses devices that
Windows installs in the same way. A device interface GUID identifies a
device interface class. The device interface GUID provides a mechanism for
applications to communicate with a driver assigned to devices in the class. In
many cases, devices that belong to a particular device setup class also belong
to the same device interface class. Some SetupDi_ API functions accept
either type of GUID. But each type of GUIDs provides access to different
types of information used for different purposes.

Chapter 8

250 USB Complete

The conventional format for expressing GUIDs divides the GUID into five
sets of hex characters, with the sets separated by hyphens.

This is the GUID for the HIDCLASS device setup class:

745a17a0-74d3-11d0-b6fe-00a0c90f57da

This is the GUID for the HID device interface class:

4d1e55b2-f16f-11cf-88cb-001111000030

Driver writers who need to provide a custom GUID can generate one using
the guidgen utility included with Visual C++. The utility uses an algorithm
that makes it extremely unlikely that someone else will create an identical
GUID.

Device Setup GUIDs
A device setup GUID identifies devices that Windows sets up and config-
ures in the same way, using the same class installer and co-installers. The sys-
tem file devguid.h defines device setup GUIDs for a variety of classes. The
file is included in the Windows DDK.

Table 8-1 shows some device setup classes that might apply to USB devices.
Most peripherals should use a device setup class that corresponds to the
device’s function, such as printer or disk drive. Several of the class names
describe functions that obviously match one of the defined USB classes. A
single device can belong to multiple setup classes, such as HID and Mouse.
The USB class is appropriate for USB hosts and hubs, as well as any device
that has unique installation and configuration requirements or capabilities
that don’t fit another class. A vendor-specific class is another option for such
devices, but Microsoft discourages adding vendor-specific classes.

Each device setup GUID corresponds to a Class key in the system registry.
Each Class key has a subkey for each instance of a device in the class. Chap-
ter 9 has more about Class keys.

Applications can use device setup GUIDs to retrieve information and per-
form various installation functions on devices. The devcon example in the
Windows DDK shows how to use device setup GUIDs in detecting and

How the Host Communicates

USB Complete 251

retrieving information about devices and performing functions such as
enabling, disabling, restarting, updating drivers for, and removing devices.
Users can perform these same functions via Windows’ Device Manager.

Device Interface GUIDs
A class or device driver can register one or more device interface classes to
enable applications to learn about and communicate with devices that use
the driver. Each device interface class has a device interface GUID.

Using a device interface GUID and SetupDi_ functions, an application can
find all attached devices in a device interface class. On detecting a device,
the application can obtain a device path name to pass to the CreateFile func-
tion. CreateFile returns a handle that the application can use to read and
write to the device. Applications can also use device interface GUIDs to
request to be notified when a device is attached or removed. Chapter 10 has
more about using GUIDs for this purpose.

Table 8-1: A selection of the device setup classes supported by Windows and
the USB device classes that encompass devices in the setup class.
Device Setup Class USB Class

Battery Devices HID

CD-ROM Drives Mass storage

Disk Drives Mass storage

Human Interface Devices (HID) HID

Imaging Device (still image) Still image capture

Keyboard HID

Modem Communications

Mouse HID

Printers Printer

Smart Card Readers Chip/smart card interface

Tape Drives Mass storage

USB Host controllers and hubs, vendor-specific
functions

Chapter 8

252 USB Complete

Unlike the device setup GUIDs, device interface GUIDs aren’t stored in one
file. A driver package may include a C header file or Visual-Basic declaration
that contains a device interface GUID. For the HID class, applications can
retrieve the GUID with the function HidD_GetHidGuid.

Not all devices require using device interface GUIDs. For example, applica-
tions can use Windows’ file system to access files on mass-storage devices
and printing functions to access printers. A custom driver can define its own
API to enable applications to access devices without having to provide a
GUID.

Some older drivers define a symbolic link for each device they control. For
example, the first device attached might be \\.\mydevice0, followed by
\\.\mydevice1, \\.\mydevice2, and so on up as needed. Applications access
these devices using the symbolic links instead of device interface GUIDs.

